SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("vazish/all-Mini-fine-tuned")
# Run inference
sentences = [
'Crunchyroll: Anime Trends 2023',
'Search Hotels in Montreal',
'Online Shopping for Vacuum Cleaners',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
dev-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9644 |
spearman_cosine | 0.6245 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 133,380 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 8.75 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 8.55 tokens
- max: 19 tokens
- min: 0.0
- mean: 0.16
- max: 1.0
- Samples:
sentence_0 sentence_1 label Military Times
Financial Analyst Resume Sample
0.0
Outdoor Music Festivals for Adventurers
Balancing Mental Health with Outdoor Adventures
0.0
The Rise of Artificial Intelligence in Video Games
Winter Deals on Streaming Equipment
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | dev-eval_spearman_cosine |
---|---|---|---|
0.1199 | 500 | 0.0841 | - |
0.2399 | 1000 | 0.0769 | - |
0.3598 | 1500 | 0.0671 | - |
0.4797 | 2000 | 0.0623 | - |
0.5997 | 2500 | 0.0558 | - |
0.7196 | 3000 | 0.0502 | - |
0.8395 | 3500 | 0.046 | - |
0.9595 | 4000 | 0.0433 | - |
-1 | -1 | - | 0.6101 |
0.1199 | 500 | 0.0362 | - |
0.2399 | 1000 | 0.0353 | - |
0.3598 | 1500 | 0.0337 | - |
0.4797 | 2000 | 0.0332 | - |
0.5997 | 2500 | 0.0327 | - |
0.7196 | 3000 | 0.0312 | - |
0.8395 | 3500 | 0.0287 | - |
0.9595 | 4000 | 0.0286 | - |
-1 | -1 | - | 0.6196 |
0.1199 | 500 | 0.0253 | - |
0.2399 | 1000 | 0.0232 | - |
0.3598 | 1500 | 0.0207 | - |
0.4797 | 2000 | 0.0195 | - |
0.5997 | 2500 | 0.0182 | - |
0.7196 | 3000 | 0.0162 | - |
0.8395 | 3500 | 0.0139 | - |
0.9595 | 4000 | 0.0139 | - |
-1 | -1 | - | 0.6221 |
0.1199 | 500 | 0.0195 | - |
0.2399 | 1000 | 0.0166 | - |
0.3598 | 1500 | 0.0136 | - |
0.4797 | 2000 | 0.012 | - |
0.5997 | 2500 | 0.0108 | - |
0.7196 | 3000 | 0.0087 | - |
0.8395 | 3500 | 0.0072 | - |
0.9595 | 4000 | 0.0069 | - |
-1 | -1 | - | 0.6227 |
0.1199 | 500 | 0.0162 | - |
0.2399 | 1000 | 0.0127 | - |
0.3598 | 1500 | 0.0096 | - |
0.4797 | 2000 | 0.0075 | - |
0.5997 | 2500 | 0.0065 | - |
0.7196 | 3000 | 0.0049 | - |
0.8395 | 3500 | 0.0043 | - |
0.9595 | 4000 | 0.0043 | - |
-1 | -1 | - | 0.6229 |
0.1199 | 500 | 0.0139 | - |
0.2399 | 1000 | 0.0099 | - |
0.3598 | 1500 | 0.0069 | - |
0.4797 | 2000 | 0.005 | - |
0.5997 | 2500 | 0.0042 | - |
0.7196 | 3000 | 0.0031 | - |
0.8395 | 3500 | 0.0027 | - |
0.9595 | 4000 | 0.0029 | - |
-1 | -1 | - | 0.6234 |
0.1199 | 500 | 0.0125 | - |
0.2399 | 1000 | 0.0078 | - |
0.3598 | 1500 | 0.005 | - |
0.4797 | 2000 | 0.0036 | - |
0.5997 | 2500 | 0.0028 | - |
0.7196 | 3000 | 0.0022 | - |
0.8395 | 3500 | 0.002 | - |
0.9595 | 4000 | 0.0022 | - |
-1 | -1 | - | 0.6248 |
0.1199 | 500 | 0.0114 | - |
0.2399 | 1000 | 0.0068 | - |
0.3598 | 1500 | 0.004 | - |
0.4797 | 2000 | 0.0027 | - |
0.5997 | 2500 | 0.0023 | - |
0.7196 | 3000 | 0.0014 | - |
0.8395 | 3500 | 0.0015 | - |
0.9595 | 4000 | 0.0015 | - |
-1 | -1 | - | 0.6245 |
0.1199 | 500 | 0.0107 | - |
0.2399 | 1000 | 0.0058 | - |
0.3598 | 1500 | 0.0034 | - |
0.4797 | 2000 | 0.0021 | - |
0.5997 | 2500 | 0.0016 | - |
0.7196 | 3000 | 0.0011 | - |
0.8395 | 3500 | 0.0013 | - |
0.9595 | 4000 | 0.0011 | - |
-1 | -1 | - | 0.6249 |
0.1199 | 500 | 0.0097 | - |
0.2399 | 1000 | 0.0048 | - |
0.3598 | 1500 | 0.0024 | - |
0.4797 | 2000 | 0.0015 | - |
0.5997 | 2500 | 0.0013 | - |
0.7196 | 3000 | 0.0009 | - |
0.8395 | 3500 | 0.001 | - |
0.9595 | 4000 | 0.0009 | - |
-1 | -1 | - | 0.6245 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for vazish/all-Mini-fine-tuned
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Pearson Cosine on dev evalself-reported0.964
- Spearman Cosine on dev evalself-reported0.624