SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("vazish/all-Mini-fine-tuned")
# Run inference
sentences = [
    'Crunchyroll: Anime Trends 2023',
    'Search Hotels in Montreal',
    'Online Shopping for Vacuum Cleaners',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9644
spearman_cosine 0.6245

Training Details

Training Dataset

Unnamed Dataset

  • Size: 133,380 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 8.75 tokens
    • max: 21 tokens
    • min: 3 tokens
    • mean: 8.55 tokens
    • max: 19 tokens
    • min: 0.0
    • mean: 0.16
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Military Times Financial Analyst Resume Sample 0.0
    Outdoor Music Festivals for Adventurers Balancing Mental Health with Outdoor Adventures 0.0
    The Rise of Artificial Intelligence in Video Games Winter Deals on Streaming Equipment 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss dev-eval_spearman_cosine
0.1199 500 0.0841 -
0.2399 1000 0.0769 -
0.3598 1500 0.0671 -
0.4797 2000 0.0623 -
0.5997 2500 0.0558 -
0.7196 3000 0.0502 -
0.8395 3500 0.046 -
0.9595 4000 0.0433 -
-1 -1 - 0.6101
0.1199 500 0.0362 -
0.2399 1000 0.0353 -
0.3598 1500 0.0337 -
0.4797 2000 0.0332 -
0.5997 2500 0.0327 -
0.7196 3000 0.0312 -
0.8395 3500 0.0287 -
0.9595 4000 0.0286 -
-1 -1 - 0.6196
0.1199 500 0.0253 -
0.2399 1000 0.0232 -
0.3598 1500 0.0207 -
0.4797 2000 0.0195 -
0.5997 2500 0.0182 -
0.7196 3000 0.0162 -
0.8395 3500 0.0139 -
0.9595 4000 0.0139 -
-1 -1 - 0.6221
0.1199 500 0.0195 -
0.2399 1000 0.0166 -
0.3598 1500 0.0136 -
0.4797 2000 0.012 -
0.5997 2500 0.0108 -
0.7196 3000 0.0087 -
0.8395 3500 0.0072 -
0.9595 4000 0.0069 -
-1 -1 - 0.6227
0.1199 500 0.0162 -
0.2399 1000 0.0127 -
0.3598 1500 0.0096 -
0.4797 2000 0.0075 -
0.5997 2500 0.0065 -
0.7196 3000 0.0049 -
0.8395 3500 0.0043 -
0.9595 4000 0.0043 -
-1 -1 - 0.6229
0.1199 500 0.0139 -
0.2399 1000 0.0099 -
0.3598 1500 0.0069 -
0.4797 2000 0.005 -
0.5997 2500 0.0042 -
0.7196 3000 0.0031 -
0.8395 3500 0.0027 -
0.9595 4000 0.0029 -
-1 -1 - 0.6234
0.1199 500 0.0125 -
0.2399 1000 0.0078 -
0.3598 1500 0.005 -
0.4797 2000 0.0036 -
0.5997 2500 0.0028 -
0.7196 3000 0.0022 -
0.8395 3500 0.002 -
0.9595 4000 0.0022 -
-1 -1 - 0.6248
0.1199 500 0.0114 -
0.2399 1000 0.0068 -
0.3598 1500 0.004 -
0.4797 2000 0.0027 -
0.5997 2500 0.0023 -
0.7196 3000 0.0014 -
0.8395 3500 0.0015 -
0.9595 4000 0.0015 -
-1 -1 - 0.6245
0.1199 500 0.0107 -
0.2399 1000 0.0058 -
0.3598 1500 0.0034 -
0.4797 2000 0.0021 -
0.5997 2500 0.0016 -
0.7196 3000 0.0011 -
0.8395 3500 0.0013 -
0.9595 4000 0.0011 -
-1 -1 - 0.6249
0.1199 500 0.0097 -
0.2399 1000 0.0048 -
0.3598 1500 0.0024 -
0.4797 2000 0.0015 -
0.5997 2500 0.0013 -
0.7196 3000 0.0009 -
0.8395 3500 0.001 -
0.9595 4000 0.0009 -
-1 -1 - 0.6245

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.2
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
1
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vazish/all-Mini-fine-tuned

Finetuned
(404)
this model

Evaluation results